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Abstract.  In this study, full-scale flight test N/rev pilot floor vertical vibration is modeled 
using neural networks and ground based wind tunnel test data for low speed level flight 
conditions.  Two full-scale UH-60A Black Hawk databases are used.  The first database is the 
NASA/Army UH-60A Airloads Program flight test database.  The second database is the low 
speed full-scale UH-60A rotor-only wind tunnel database that was recently acquired in the 
NASA Ames 80- by 120-Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA).  
This neural network based modeling or representation study involves the prediction of the 
helicopter flight-test peak N/rev pilot floor vertical vibration (PVV) from the wind tunnel 
rotating system hub accelerations, and separately, from the wind tunnel fixed system N/rev 
hub loads obtained from the LRTA dynamic rotor balance system.  Since the measured wind 
tunnel data are being presented for the first time, the validation of the measured wind tunnel 
data is important and is considered prior to the prediction of the flight test PVV.  The 
measured wind tunnel rotating system hub accelerations and the fixed system N/rev balance-
system hub loads have been found to be of good quality. The results show that the measured 
wind tunnel rotating system hub accelerations and the operating parameters can be used to 
represent the flight test rotating system hub accelerations.  The wind tunnel rotating system 
hub accelerations and the operating parameters can be used to represent the six components 
of the wind tunnel N/rev balance hub loads.  The wind tunnel rotating system hub 
accelerations and the operating parameters can be used to represent the flight test PVV.  The 
six components of the wind tunnel N/rev balance-system hub loads and the operating 
parameters can be used to represent the PVV.  Based on the above two conclusions of this 
initial study, it appears that the wind tunnel rotating system hub accelerations can have a 
greater role than previously thought.  The successful establishment of the present neural 
network based links between the wind tunnel data and the flight test data can significantly 
increase the value of wind tunnel testing. 
 
1 NOTATION 
 

Advance ratio Nondimensional velocity representing either the forward speed of the 
helicopter or the airspeed in the wind tunnel 

 
LRTA Large Rotor Test Apparatus test stand/facility at NASA Ames 
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MIMO Multiple-input, multiple-output 
 
MISO Multiple-input, single-output 
 
N Number of main rotor blades, N = 4 for the UH-60A 
 
N/rev Integer (N) multiple of main rotor speed 
 
P Per revolution 
 
PVV Peak, N/rev pilot floor vertical vibration, g’s 
 
Weight Nondimensional coefficient representing helicopter weight 
coefficient 
 
R Linear regression correlation, an R close to 1 indicates that a regression-

based relationship exists between the test data and the neural network 
predictions  

 
RMS error Root mean square error between the test data and the neural network 

predictions, g’s 
 
Solidity Nondimensional coefficient, total blade area divided by the rotor disc area 
 
Thrust Nondimensional coefficient representing rotor thrust  
coefficient  
 
2 INTRODUCTION 
 

For rotorcraft, the reduction of vibration to minimum levels is important.  Active controls 
through high frequency blade pitch inputs have been successfully used to reduce vibration.  
The creation of accurate identification models is the first step towards the eventual 
implementation of active control of vibration.  Studies at NASA Ames Research Center1, 2 
have shown that neural networks can be used to model rotorcraft fuselage vibration.  
References 1 and 2 showed that the full-scale UH-60A Black Hawk rotor hub accelerations 
measured in flight can be used to represent the N/rev pilot floor vibration (where N is the 
number of rotor blades and N = 4 for the UH-60A).  The above neural network based 
analyses1, 2 were performed using only flight test data obtained from the NASA/Army UH-
60A Airloads Program.3   
 
The present neural network representation study introduces the use of ground based wind 
tunnel test data to model flight test pilot floor vibration in the vertical direction. The low 
speed full-scale UH-60A wind tunnel database4, 5 that was acquired in the NASA Ames 80- 
by 120-Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA) is used.  The 
successful establishment of such neural network based links (relationships) between the wind 
tunnel parameters and the flight test data can increase the value of wind tunnel testing.  The 
consistent successful utilization of such links can quantify the anticipated benefits that could 
be obtained in flight testing prior to the actual flight testing.  In the present study, the 
measured wind tunnel parameters under consideration include both rotating system 
parameters (the hub accelerations) and the fixed system parameters (the hub loads from the 
dynamic rotor balance system). 
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As background to the present study, a sample comparison of the (N-1)/rev (or 3/rev) 
tangential hub acceleration data from both wind tunnel and flight tests is shown in Fig. 1.  
Figure 1 shows that the wind tunnel and flight test data have similar trends.  Using neural 
networks it was shown earlier1, 2 that the flight test hub accelerations plus the advance ratio 
and gross weight could be used to model the pilot vibration.  Based on the similarity seen in 
Fig. 1, the present neural network based study proceeds to link the wind tunnel hub 
accelerations to the flight test pilot floor vertical vibration.  Subsequently, this study also 
considers additional wind tunnel data such as the fixed system rotor-generated balance-
system loads.  Procedurally, the wind tunnel and the flight test operating conditions are 
matched in a simple manner.  The wind tunnel and flight test advance ratios are matched, and 
the flight test weight coefficient/solidity ratio and the wind tunnel thrust coefficient/solidity 
ratio multiplied by the cosine of the rotor shaft angle are matched.  The present approach of 
relating the wind tunnel variables to the flight test variables is believed to be an adequate first 
pass approach for this initial study.   
 
A successful conclusion of the present neural network effort may potentially facilitate the 
eventual development of active control vibration techniques in the wind tunnel that will also 
work in flight, and also the anticipated benefit in flight quantified from wind tunnel testing 
alone. The on-line or real-time implementation of active control requires that the neural 
networks and their associated training algorithms be of the type such that the neural networks 
can be built (trained) on-line.  The building of neural networks in real-time is a separate 
research topic that is not addressed in the present study. 
 
3 OBJECTIVES 
 

This neural network based modeling or representation study involves the helicopter flight test 
peak, N/rev pilot floor vertical vibration (PVV), the wind tunnel rotating system hub 
accelerations, and separately, the wind tunnel fixed system hub loads obtained from a 
dynamic rotor balance system.  The present study considers low speed level flight conditions.  
In the following, the wind tunnel advance ratio and the thrust coefficient/solidity ratio 
multiplied by the cosine of the rotor shaft angle are referred to as the wind tunnel operating 
condition parameters (the "operating parameters"). This study has the following four 
objectives: 
  
1. Validate the measured wind tunnel hub accelerations in light of the previously validated 

flight test hub accelerations (that were validated in an earlier study), and separately, 
validate the six components of the measured wind tunnel fixed system N/rev balance hub 
loads.  

 
2. Using the measured wind tunnel rotating system hub accelerations and the operating 

parameters, determine whether reasonably accurate neural network based models of the 
separately measured, but actual, pilot floor vertical vibration can be obtained.  

 
3. Using the measured six components of the wind tunnel fixed system N/rev balance hub 

loads and the operating parameters, determine whether reasonably accurate neural 
network models of the pilot floor vertical vibration can be obtained.  

 
4. Assess the results from the above Objectives 3 and 4 to determine whether a particular 

approach is markedly better than the others to predict the flight test measurements or 
whether alternative wind tunnel test measurements would be required. 
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4 FLIGHT TEST AND WIND TUNNEL DATABASES 
 

The source of the flight test data was the NASA/Army UH-60A Airloads Program flight test 
database.3  The flight test data were obtained with the (N-1)P bifilar vibration absorbers 
installed on the UH-60A.  The creation of the peak, N/rev pilot floor vertical vibration, PVV, 
database has been described separately.1  The present study considers the flight test rotating 
system hub accelerometers.  Specifically, the (N-1)P and (N+1)P tangential hub accelerations 
and the NP vertical hub acceleration are considered.  The appropriate hub acceleration values 
are taken as those corresponding to the peak, N/rev pilot floor vertical vibration under 
consideration.1  The number of data points that are of present interest is approximately 60 
(low speed level flight conditions). 
 
The low speed full-scale UH-60A wind tunnel database4,5 that was acquired in the NASA 
Ames 80- by 120-Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA) is used.  
The bifilar vibration absorbers were not installed during the above wind tunnel testing.  The 
present study considers the (N-1)P and (N+1)P tangential hub accelerations and the NP 
vertical hub acceleration.  Also, the six components of the N/rev hub loads from the LRTA 
dynamic rotor balance-system are considered.  These six N/rev hub loads are given as 
follows: the normal force, the axial force, the side force, the pitching moment, the rolling 
moment, and the yawing moment.  The number of experimental points that are of present 
interest is approximately 60.  These low speed wind tunnel data points include variations in 
the advance ratio, the thrust coefficient, and the shaft angle.  The variations in the shaft angle 
allow for simulation of flight conditions that include level flight, climb and descent 
conditions.  
 
5 BASIC VARIATIONS 
 

Figures 2 and 3 show the variations of the measured wind tunnel hub accelerations.  The data 
shown in Figs. 2 and 3 use the above-mentioned 60-point wind tunnel database.  In addition 
to the variation in the advance ratio covered in these figures, these data involve variations in 
the thrust coefficient and the shaft angle.  As a result, many of these operating conditions do 
not simulate level flight.  Figure 2 shows the variations of the wind tunnel (N-1)P and (N+1)P 
tangential hub accelerations versus the advance ratio. Figure 3 shows the variation of the 
wind tunnel NP vertical hub acceleration versus the advance ratio. 
 
Figures 4 and 5 show the variations of the six components of the wind tunnel balance N/rev 
hub loads.  The data shown in Figs. 4 and 5 use the above-mentioned 60-point wind tunnel 
database.  In addition to the variation in the advance ratio covered in these figures, these data 
involve variations in the thrust coefficient and the shaft angle.  Figure 4 shows the variations 
of the three N/rev balance hub forces (the normal force, the axial force, and the side force) 
versus the advance ratio.  Figure 4 shows that the N/rev side force is the largest of the three 
N/rev forces.  Figure 5 shows the variations of the three N/rev balance hub moments (the 
pitching moment, the rolling moment, and the yawing moment) versus the advance ratio.   It 
appears from Fig. 5 that the N/rev rolling moment is larger than the other two N/rev 
moments.  Note that the balance forces and moments are expressed at the hub location. 
 
The conclusion from the above figures (Figs. 2-5) is that the variations of the N/rev pilot 
floor vertical vibration (PVV), the wind tunnel hub accelerations, and the wind tunnel 
balance hub loads may be considered to have similar trends with increasing advance ratio but 
there are obviously other important factors.  
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6 NEURAL NETWORK APPROACH 
 

To accurately capture the required functional dependencies, the neural network inputs must 
be carefully selected and account for all important physical traits that are specific to the 
application.  The important attributes of a neural network are its type (radial-basis function 
network, back-propagation network, recurrent network, etc.) and its complexity (i.e., the 
inputs, the type, and the number of processing elements (PEs) and the number of hidden 
layers).  The present overall neural network modeling approach is based on an earlier 
approach.1  The back-propagation type of network with a hyperbolic tangent as the basis 
function, and the extended-delta-bar-delta (EDBD) algorithm as the learning rule6 is used.  
The required number of neural network PEs depends on the specific application.  The 
determination of the appropriate number of PEs is done by starting with a minimum number 
of PEs.  Additional PEs are added to improve neural network performance by reducing the 
RMS error between the test data and the neural network predictions.  In the present study, one 
to five PEs are added at each step in this process.  A more automated method of determining 
the optimum neural network architecture would be desirable, and this subject is an active area 
of research.  If the trained neural network correlation plot, comparing measured and predicted 
values, shows only small deviations from the 45-deg reference line, the neural network has 
produced an acceptable representation of the subject test data.  
 
For the notation used in this paper, a neural network architecture such as "2-10-5-1" refers to 
a neural network with two inputs, ten processing elements (PEs) in the first hidden layer, five 
PEs in the second hidden layer, and one output.  The present application of neural networks 
to low speed level flight full-scale helicopter flight test data and wind tunnel data has been 
conducted using the neural networks package NeuralWorks Pro II/PLUS (version 5.51) by 
NeuralWare.6  
 
7 DATA VALIDATION 
 

The validation of the measured wind tunnel data is particularly important because it has not 
been presented before.  The validation (or the assessment of the data quality) of the measured 
wind tunnel data is considered prior to the prediction of the pilot floor vertical vibration.  
Consequently, the results of this study are presented in two parts, Sections 7 and 8, 
respectively.  Section 7.1 of this study considers the validation of the measured wind tunnel 
rotating system hub accelerations in light of the previously validated flight test hub 
accelerations.1  Separately, the validation of the measured wind tunnel fixed system balance 
loads is considered in Section 7.2.  Section 8 of this study considers the prediction of the 
flight test pilot floor vertical vibration PVV using measured wind tunnel data.      
 
The neural network results presented in this paper (Sections 7 and 8) are based on two full-
scale UH-60A databases.  The two UH-60A databases are the NASA/Army Airloads 
Program flight test database3 and the low speed wind tunnel database4 that was acquired in 
the NASA Ames 80- by 120-Foot Wind Tunnel with the LRTA.  The present neural network 
based modeling study considers low speed level flight conditions and does not include the 
hover condition.  The number of neural network training points is approximately 60.  In the 
following, the rotating system (N-1)P and (N+1)P tangential hub accelerations and the NP 
vertical hub acceleration are referred to as the "three relevant" hub acceleration components.  
Also, the wind tunnel advance ratio and the thrust coefficient/solidity ratio multiplied by the 
cosine of the rotor shaft angle are referred to as the wind tunnel operating condition 
parameters (the "operating parameters").     
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7.1 Validation of wind tunnel data 
 

7.1.1 Validation of wind tunnel hub accelerations 
 

The measured wind tunnel rotating system three relevant hub accelerations are validated in 
the same manner as was done previously for the flight test hub accelerations.1  In the present 
study the quality of the measured wind tunnel hub accelerations has been assessed relative to  
the quality of the flight test hub accelerations.  The two 60-point low speed experimental 
databases, namely, the flight test database and separately, the wind tunnel test database, are 
used.   
 
For comparative purposes specific to the present validation effort, the previously validated 
flight test hub accelerations database is reconsidered in the following manner. A neural 
network, trained from the flight test database, is used.  This neural network uses two flight 
condition operating conditions to predict the three in-flight hub accelerations.  The two neural 
network inputs are the flight test advance ratio and the weight coefficient/solidity ratio. The 
three outputs are the three relevant flight test hub accelerations, namely, the rotating system 
(N-1)P and (N+1)P tangential hub accelerations and the NP vertical hub acceleration.   
 
For the validation of the measured wind tunnel hub accelerations, a second separate neural 
network is trained from the wind tunnel test database, and uses two wind tunnel test operating 
conditions to predict the three wind tunnel hub accelerations.  The wind tunnel operating 
parameters are used as the two neural network inputs.  The two neural network inputs are the 
wind tunnel advance ratio and the thrust coefficient/solidity ratio multiplied by the cosine of 
the rotor shaft angle.  The three relevant measured wind tunnel hub accelerations are the three 
neural network outputs.  These three outputs are the wind tunnel rotating system (N-1)P and 
(N+1)P tangential hub accelerations and the NP vertical hub acceleration.  
 
Two different MIMO 2-10-5-3 back-propagation neural networks are used, one for the flight 
test hub accelerations and the other for the measured wind tunnel hub accelerations.  The 
neural network associated with the flight test accelerations has been trained for 1 million 
iterations and the neural network associated the measured wind tunnel hub accelerations has 
been trained for 4 million iterations.  Table 1 below shows the resulting correlations, i.e., the 
R's and the nondimensional RMS errors.  The nondimensional RMS errors are obtained as 
follows. The dimensional RMS error under consideration is divided by the maximum value of 
its respective hub acceleration component.  Table 1 shows that the correlations for the flight 
test hub accelerations and the measured wind tunnel hub accelerations are similar, thus 
validating the measured wind tunnel hub accelerations.  From this study, the measured wind 
tunnel rotating system hub accelerations have been found to be of good quality. 
 
7.1.2 Relationships between measured wind tunnel and flight test hub accelerations 
 

As shown above, the measured wind tunnel hub accelerations have been found to be of good 
quality.  As an additional indicator of consistency, the measured wind tunnel hub 
accelerations are used to model the flight test hub accelerations.  A simple MIMO 5-2-3 
back-propagation neural network is used.  The five wind tunnel inputs are as follows: the 
three relevant wind tunnel hub accelerations, the advance ratio, and the thrust 
coefficient/solidity ratio multiplied by the cosine of the rotor shaft angle (the latter two inputs 
are the same as the wind tunnel operating parameters). The three outputs are the three 
relevant flight test hub accelerations.  Procedurally, the above inputs (measured wind tunnel 
quantities) are available at the wind tunnel operating conditions.  Since the subject outputs 
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(the flight test hub accelerations) are originally from the flight test database, appropriate 
values of the flight test based hub accelerations have to be obtained at the wind tunnel 
operating condition values.  This intermediate step is accomplished via a neural network that 
is not described in this paper since it is a procedural detail.  Subsequently, the above back-
propagation neural network has been trained for 50,000 iterations and the resulting R’s and 
RMS errors are as follows. For the 3P tangential hub acceleration correlation, R = 0.98 and 
RMS error = 0.01 g’s.  For the 5P tangential hub acceleration correlation, R = 0.95 and RMS 
error = 0.01 g’s.  For the 4P vertical hub acceleration correlation, R = 0.97 and RMS error = 
0.01 g’s.  Clearly this trained neural network can easily capture the direct relationships 
between the wind tunnel hub accelerations and the flight test hub accelerations.  
 
7.2 Validation of wind tunnel balance loads  
 

In this section, the quality of the measured wind tunnel fixed system N/rev balance-system 
hub loads is assessed.  The six components of the N/rev hub loads from the dynamic rotor 
balance system are modeled using the measured wind tunnel hub accelerations.  It has been 
shown in Section 7.1 that the wind tunnel hub accelerations are valid (of good quality) and 
consistent.  A MIMO 5-4-6 back-propagation neural network is used.  The five wind tunnel 
inputs are as follows: the three relevant wind tunnel hub accelerations, the advance ratio, and 
the thrust coefficient/solidity ratio multiplied by the cosine of the rotor shaft angle (the latter 
two inputs are the same as the wind tunnel operating parameters). The six outputs are the 
wind tunnel N/rev balance-system hub loads, namely, the three N/rev forces (normal, axial, 
and side forces) and the three N/rev moments (pitching, rolling, and yawing moments).  The 
above back-propagation network has been trained for 400,000 iterations.  The resulting R’s 
and RMS errors are shown in Table 2.  Figures 6-11 show the resulting correlation plots for 
the above balance N/rev hub loads.  
 
Overall, the quality of the measured wind tunnel N/rev balance-system hub loads is assessed 
as being good.  Figures 6-11 show that the three relevant wind tunnel hub accelerations and 
the operating parameters can represent the six components of the low speed wind tunnel 
N/rev balance-system hub loads.  This implies that numerical relationships (the identification 
model) relating the full-scale measured wind tunnel fixed system balance loads to the 
measured wind tunnel rotating system hub accelerations has been obtained.  Finally, the 
successful completion of the above data validation effort gives the necessary 
reality/consistency checks associated with the wind tunnel rotating system hub accelerations 
and the corresponding fixed system balance hub loads.    
 
8 PREDICTION OF PILOT FLOOR VERTICAL VIBRATION, PVV 
 

In this part of the study, the flight-test peak N/rev pilot floor vertical vibration PVV is 
predicted using neural networks and measured ground based wind tunnel data.  These 
measured wind tunnel data include the three relevant rotating system hub accelerations and 
separately, the fixed system N/rev balance-system hub loads.  The low speed level flight full-
scale PVV values of current interest were obtained earlier1 from the NASA/Army UH-60A 
Airloads Program flight test database.3  Since the PVV values are originally from a flight test 
database, for present purposes, the appropriate values of the PVV have to be obtained at the 
wind tunnel operating condition values.  This intermediate step is accomplished via a neural 
network.  The PVV values at the wind tunnel operating conditions are referred to as the 
"flight test PVV" values.  These "flight test PVV" values are obtained as follows.  A MISO 2-
10-5-1 back-propagation neural network is trained from the flight test database.  The flight 
test advance ratio and the weight coefficient/solidity ratio are the two inputs, and the single 



 8

output is the actual pilot floor vertical vibration, PVV.  The above back-propagation network 
has been trained for 1 million iterations with resulting R = 0.82 and RMS error = 0.02 g’s.  
The above neural network model is similar to the model that was obtained earlier1 (Fig. 7 of 
Reference 1).  Figure 12 shows the above flight test PVV variation with the advance ratio 
where the above neural network has been executed using the wind tunnel operating 
parameters as the inputs. 
 
The following sections describe three different methods of predicting the flight test PVV.  In 
order to predict the flight test PVV, the first method uses the flight test rotating system hub 
accelerations.  The second method uses the measured wind tunnel rotating system hub 
accelerations, and the third method uses the measured wind tunnel fixed system N/rev 
balance-system hub loads.    
 
8.1 PVV prediction using flight test rotating system hub accelerations 
   

In this section, the original 60-point flight test database (Section 4) and a smaller 29-point 
flight test database derived from the above 60-point flight test database are used to predict the 
PVV.  In the 60-point flight test database, the advance ratio range is 0.002 to 0.20.   The 29-
point flight test database envelope contains data only for operating conditions that closely 
match the measured 60-point wind tunnel database envelope.  Both the 29-point flight test 
database and the 60-point measured wind tunnel database have an advance ratio range 0.09 to 
0.19. 
 
First, using the 60-point flight test database, a simple MISO 5-9-1 back-propagation neural 
network is trained.  The five flight test inputs are as follows: the three relevant actual flight 
test hub accelerations, the advance ratio, and the weight coefficient/solidity ratio. The single 
output is the actual flight test PVV. The above back-propagation network has been trained for 
1.2 million iterations with resulting R = 0.994 and RMS error = 0.00 g's.  Figure 13a shows 
the resulting correlation plot for the PVV.  In order to show a representative variation with 
advance ratio, a weight coefficient/solidity ratio (or equivalently, the wind tunnel thrust 
coefficient/solidity ratio multiplied by the cosine of the rotor shaft angle) = 0.08 is 
considered.  Figure 13b shows the predicted PVV with advance ratio at constant thrust using 
this neural network. 
 
Second, using the 29-point flight test database, a simple MISO 5-5-1 back-propagation neural 
network is trained.  The five flight test inputs are as follows: the three relevant actual flight 
test hub accelerations, the advance ratio, and the weight coefficient/solidity ratio. The single 
output is the actual flight test PVV. The back-propagation network has been trained for 
425,000 iterations with resulting R = 0.996 and RMS error = 0.00 g's.  Figure 14a shows the 
resulting correlation plot for the PVV.  Figure 14b shows the predicted PVV with advance 
ratio using the 29-point flight test database for the same representative operating condition as 
in Fig. 13b (weight coefficient/solidity ratio = 0.08). For comparison, Fig. 14b also includes 
the corresponding 60-point variation from Fig. 13b.  Figure 14b shows that there is a 
significant difference between the PVV predictions obtained using the 60-point and the 29-
point flight test databases when using the rotating system flight test hub accelerations. 
 
To understand the differences in the predicted PVV using the two different neural networks, 
the predicted flight test PVV derived from Fig. 12 is considered.  In Fig. 12, a 60-point flight 
test database has been used but the only inputs were the advance ratio and the weight 
coefficient/solidity ratio. Figure 15 shows the resulting PVV variation with advance ratio 
derived from Fig. 12 (from the neural network used to obtain Fig. 12) along with the above 
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two variations using the flight test rotating system hub accelerations (from Fig 13b, using the 
60-point trained network, and Fig. 14b, using the 29-point trained network).  The PVV 
variation using the advance ratio and the weight coefficient (derived from Fig. 12) appears to 
be a mean variation for the PVV as compared to the other two PVV variations obtained by 
using the flight test rotating system hub accelerations (60-point and 29-point databases, Figs. 
13b and 14b, respectively).  Table 3 shows the measured flight test PVV for two low speed 
operating conditions that are practically the same. However, the measured PVV values are 
significantly different (0.15 g's and 0.05 g's, Table 3).  The two neural network based PVV 
predictions using the flight test rotating system hub accelerations are sensitive to the above 
large difference in the PVV values that have been used in the training sets.  The neural 
network based PVV prediction using the advance ratio and the weight coefficient (derived 
from Fig. 12) gives a mean value and this PVV variation may likely be more representative.  
In the following sections, the PVV variation derived from Fig. 12 is therefore used as the 
standard PVV variation for purposes of comparison. 
 
8.2 PVV prediction using measured wind tunnel rotating system hub accelerations 
 

A simple MISO 5-2-1 back-propagation neural network is used.  The five wind tunnel inputs 
are as follows: the three relevant wind tunnel hub accelerations, the advance ratio, and the 
thrust coefficient/solidity ratio multiplied by the cosine of the rotor shaft angle (the latter two 
inputs are the same as the wind tunnel operating parameters). The single output is the flight 
test PVV.  The above back-propagation network has been trained for 5000 iterations with 
resulting R = 0.997 and RMS error = 0.00 g's.  Figure 16a shows the resulting correlation plot 
for the PVV.  In order to show a representative variation with advance ratio, a weight 
coefficient/solidity ratio (or equivalently, the wind tunnel thrust coefficient/solidity ratio 
multiplied by the cosine of the rotor shaft angle) = 0.08 is considered.  Figure 16b shows the 
resulting variation of the flight test PVV (derived from Fig. 12) and the predicted PVV with 
advance ratio.  Figures 16a and 16b show that the three relevant measured wind tunnel hub 
accelerations and the operating parameters can likely accurately characterize and quantify the 
low speed level flight PVV.  
 
8.3 PVV prediction using measured wind tunnel balance-system hub loads 
 

A simple MISO 8-2-1 back-propagation neural network is used.  The eight wind tunnel inputs 
are as follows: the six measured wind tunnel fixed system N/rev balance-system hub loads, 
the advance ratio, and the thrust coefficient/solidity ratio multiplied by the cosine of the rotor 
shaft angle (the latter two inputs are the same as the operating parameters).  The single output 
is the flight test PVV. The above back-propagation network has been trained for 5500 
iterations with resulting R = 0.997 and RMS error = 0.00 g's.  Figure 17a shows the resulting 
correlation plot for the PVV. In order to show a representative variation with advance ratio, a 
weight coefficient/solidity ratio (or equivalently, the wind tunnel thrust coefficient/solidity 
ratio multiplied by the cosine of the rotor shaft angle) = 0.08 is considered.  Figure 17b shows 
the variation of the flight test PVV (derived from Fig. 12) and the predicted PVV with 
advance ratio.  Figures 17a and 17b show that the six components of the measured wind 
tunnel N/rev balance-system hub loads and the operating parameters can very accurately 
represent the low speed level flight PVV. 
  
9 CONCLUDING REMARKS 
 

Using only flight test data, it was shown earlier1, 2 that the rotating system hub accelerations 
are clearly a factor in determining the pilot vibration.  The above earlier result involving the 
flight test hub accelerations allowed for the identification of more general neural network 
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relationships between the experimental data such as the hub accelerations obtained from wind 
tunnel testing and the experimental pilot floor vibration data obtained from flight testing.   
 
The present neural network representation study introduces the use of full-scale measured 
ground based wind tunnel test data to model the full-scale flight test pilot floor vibration in 
the vertical direction.  The measured wind tunnel parameters under consideration include 
both rotating system parameters (the hub accelerations) and the fixed system parameters (the 
N/rev hub loads from a dynamic rotor balance-system).  Specifically, the low speed level 
flight full-scale peak N/rev pilot floor vertical vibration (PVV) obtained from flight testing is 
considered in this initial study for modeling purposes.  In the following, the wind tunnel 
advance ratio and the thrust coefficient/solidity ratio multiplied by the cosine of the rotor 
shaft angle are referred to as the wind tunnel operating condition parameters (the operating 
parameters).   Specific conclusions are as follows: 
 
1) The measured wind tunnel rotating system hub accelerations and the six components of 
the fixed system N/rev balance-system hub loads have been found to be of good quality. 
 
2) The measured wind tunnel rotating system hub accelerations and the operating parameters 
can be used to represent the flight test rotating system hub accelerations.  
 
3) The measured wind tunnel rotating system hub accelerations and the operating parameters 
can be used to represent the six components of the measured wind tunnel fixed system N/rev 
balance-system hub loads. 
 
4) The measured wind tunnel rotating system hub accelerations and the operating parameters 
can be used to represent the low speed PVV.  
 
5) The six components of the measured wind tunnel fixed system N/rev balance-system hub 
loads and the operating parameters can be used to represent the low speed PVV. 
 
Based on the above Conclusions 4 and 5 of this initial study, it appears that the wind tunnel 
rotating system hub accelerations can have a greater role than previously thought.  In order to 
model the flight test PVV, compared to the use of the fixed system balance-system hub loads, 
the successful use of the rotating system hub accelerometers may entail less effort.  This 
would be because the use of a fixed system balance-system involves the associated 
calibration of the balance.   
 
In the future, the present neural network based study involving the pilot floor vibration in the 
vertical direction will be extended to include the pilot floor vibration in the other two 
directions also, namely, the lateral and longitudinal directions. The successful establishment 
of such neural network based links (relationships) between the wind tunnel parameters and 
the flight test data can significantly increase the value of wind tunnel testing. 
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Table 1: Correlation results for full-scale flight test and measured wind tunnel hub accelerations. 
 

 
R 

 
RMS error 

(non dimensional) 
 

 
 

Hub 
acceleration 
component  

Flight test 
 

Wind 
tunnel test 

 
Flight test 

 
Wind 

tunnel test 
(N-1)P 

Tangential 
 

0.94 
 

0.96 
 

0.08 
 

0.06 

(N+1)P 
Tangential 

 
0.89 

 
0.84 

 
0.08 

 
0.09 

NP 
Vertical 

 
0.88 

 
0.96 

 
0.09 

 
0.06 

 
 
 
 

Table 2: Correlation results for full-scale measured wind tunnel balance loads. 
 

 
N/rev Hub load 

 
R 

 
RMS error 

 
Normal Force 

 
0.99 

 
39 lb 

 
Axial Force 

 
0.97 

 
97 lb 

 
Side Force 

 
0.98 

 
158 lb 

 
Pitching Moment 

 
0.98 

 
96 ft-lb 

 
Rolling Moment 

 
0.96 

 
163 ft-lb 

 
Yawing Moment 

 
0.99 

 
116 ft-lb 
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Table 3: Flight test data, pilot floor vertical vibration. 

 
Advance ratio Weight coefficient/solidity Measured PVV, g's 

0.093 0.080 0.15 
0.094 0.081 0.05 
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Figure 1: UH-60A wind tunnel and flight test full-scale (N-1)P tangential hub acceleration. 
 
 

Figure 2: UH-60A wind tunnel (N-1)P and (N+1)P tangential hub accelerations. 
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Figure 3: UH-60A wind tunnel NP vertical hub acceleration. 
 

Figure 4: UH-60A LRTA N/rev balance-system hub forces. 
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Figure 5: UH-60A LRTA N/rev balance-system hub moments.  

 
Figure 6: Normal force correlation using wind tunnel hub accelerations and operating parameters. 
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Figure 7: Axial force correlation using wind tunnel hub accelerations and operating parameters. 

 
 

Figure 8: Side force correlation using wind tunnel hub accelerations and operating parameters. 
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Figure 9: Pitching moment correlation using wind tunnel hub accelerations and operating parameters. 

 

 
Figure 10: Rolling moment correlation using wind tunnel hub accelerations and operating parameters. 

 
 
 
 
 
 
 
 
 

0

1000

2000

3000

0 1000 2000 3000

N
eu

ra
l n

et
w

or
k 

pr
ed

ic
te

d
 N

/r
ev

 p
itc

hi
ng

 m
om

en
t, 

ft
-lb

Wind tunnel N/rev pitching
moment, ft-lb

R = 0.98
RMS error = 96 ft-lb

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

N
eu

ra
l n

et
w

or
k 

pr
ed

ic
te

d
 N

/r
ev

 r
ol

lin
g 

m
om

en
t, 

ft
-lb

Wind tunnel N/rev 
rolling moment, ft-lb

R = 0.96
RMS error = 163 ft-lb



 19

 
 

 
Figure 11: Yawing moment correlation using wind tunnel hub accelerations and operating parameters. 

 
 
 
 
 
 
 
 

 
Figure 12: Predicted flight test PVV obtained using advance ratio and weight coefficient. 
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Figure 13a:  PVV correlation using flight test rotating system hub accelerations and operating parameters, 60-

point database.  
 

 
Figure 13b:  PVV prediction using flight test rotating system hub accelerations and operating parameters, 60-

point database (weight coefficient/solidity = 0.08). 

0.00

0.05

0.10

0.15

0.20

0.00 0.05 0.10 0.15 0.20

N
eu

ra
l n

et
w

or
k 

pr
ed

ic
te

d 
PV

V
g'

s

Actual flight test PVV, g's

Low speed level flight
0.002 < advance ratio < 0.20
(60-point database)

0.00

0.05

0.10

0.15

0.20

0.08 0.12 0.16 0.20

PV
V

, g
's

Advance ratio

Using flight test rotating system
 hub accelerations (60-point database)



 21

 
 
 
 

Figure 14a: PVV correlation using flight test rotating system hub accelerations and operating parameters, 29-
point database. 

 

Figure 14b:  PVV prediction using flight test rotating system hub accelerations and operating parameters, 29-
point database (weight coefficient/solidity = 0.08). 
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Figure 15: Comparison of PVV predictions (weight coefficient/solidity = 0.08). 
 

 

Figure 16a: PVV correlation using wind tunnel rotating system hub accelerations and operating parameters. 
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 Figure 16b:   PVV prediction using wind tunnel rotating system hub accelerations 
                   (weight coefficient/solidity = 0.08). 

 
 

Figure 17a: PVV correlation using the six components of N/rev balance-system hub loads. 
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     Figure 17b: PVV prediction using the six components of N/rev balance-system hub loads. 
        (weight coefficient/solidity = 0.08). 
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